Sec-88
  • 🧑Whoami
  • 🕸️Web-AppSec
    • Features Abuse
      • 2FA
      • Ban Feature
      • CAPTCHA
      • Commenting
      • Contact us
      • File-Upload
      • Inviting Feature
      • Messaging Features
      • Money-Related Features
      • Newsletter
      • Profile - Settings
      • Registration
      • Reset Password
      • Review
      • Rich Editor/Text
      • Social Sharing
      • Billing-Shipping Address Management
      • Integrations - Webhooks
      • API Key Management
    • Reconnaissance
      • Attacking Organizations with big scopes
    • Subdomain Enumeration
    • Fingerprinting
    • Dorking
    • XSS-HTML Injection
    • Improper Authentication
      • JWT Security
    • OAUTH Misconfigurations
      • OAuth 2.0 Basics
      • OAUTH Misconfigurations
    • Auth0 Misconfigurations
    • Broken Access Control
      • Insecure Direct Object References (IDOR)
      • 403 Bypass
    • Broken Link Injection
    • Command Injection
    • CORS
    • CRLF
    • CSRF
    • Host Header Attacks
    • HTTP request smuggling
    • JSON Request Testing
    • LFI
      • LFI to RCE
    • No Rate Limit
    • Parameters Manual Testing
    • Open Redirect
    • Registration & Takeover Bugs
    • Remote Code Execution (RCE)
    • Session Fixation
    • SQL Injection
      • SQL To RCE
    • SSRF
    • SSTI
    • Subdomain Takeover
    • Web Caching Vulnerabilities
    • WebSockets
    • XXE
      • XXE to RCE
    • Cookie Based Attacks
    • CMS
      • AEM [Adobe CMS]
    • XSSI (Cross Site Script Inclusion)
    • NoSQL injection
    • Local VS Remote Session Fixation
    • Protection
      • Security Mechanisms for Websites
      • Cookie Flags
      • SameSite Cookie Restrictions
      • Same-origin policy (SOP)
      • CSP
    • Hacking IIS Applications
    • Dependency Confusion
    • Attacking Secondary Context
    • Hacking Web Sockets
    • IDN Homograph Attack
    • DNS Rebinding Attack
    • LLM Hacking Checklist
    • Bypass URL Filtration
    • Cross-Site Path Traversal (CSPT)
    • PostMessage Security
    • Prototype Pollution
      • Client-Side Prototype Pollution
      • Server-Side prototype pollution
    • Tools-Extensions-Bookmarks
    • WAF Bypassing Techniques
    • SSL/TLS Certificate Lifecycle
    • Serialization in .NET
    • Client-Side Attacks
      • JavaScript Analysis
    • Bug Bounty Platforms/Programs
  • ✉️API-Sec
    • GraphQL API Security Testing
      • The Basics
      • GraphQL Communication
      • Setting Up a Vulnerable GraphQL Server
      • GraphQL Hacking Tools
      • GraphQL Attack Surface
      • RECONNAISSANCE
      • GraphQL DOS
      • Information Disclosure
      • AUTHENTICATION AND AUTHORIZATION BYPASSES
      • Injection Vulnerabilities in GraphQL
      • REQUEST FORGERY AND HIJACKING
      • VULNERABILITIES, REPORTS AND EXPLOITS
      • GraphQL Hacking Checklist
    • API Recon
    • API Token Attacks
    • Broken Object Level Authorization (BOLA)
    • Broken Authentication
    • Evasive Maneuvers
    • Improper Assets Management
    • Mass Assignment Attacks
    • SSRF
    • Injection Vulnerabilities
    • Excessive Data Exposure
    • OWASP API TOP 10 MindMap
    • Scanning APIs with OWASP ZAP
  • 📱Android-AppSec
    • Setup Android App Pentesting environment on Arch
    • Setup Android App Pentesting environment on Mac M4
    • Setup Android Pentesting Environment on Debian Linux
    • Android App Fundamentals
      • Android Architecture
      • Android Security Model
      • Android App Components
        • Intents
        • Pending Intents
    • Android App Components Security Cheatsheet
    • Android App Pentesting Checklist
    • How To Get APK file for application
    • ADB Commands
    • APK structure
    • Android Permissions
    • Exported Activity Hacking
    • BroadcastReceiver Hacking
    • Content Provider Hacking
    • Signing the APK
    • Reverse Engineering APK
    • Deep Links Hacking
    • Drozer Cheat Sheet
    • SMALI
      • SMALI Cheat Sheet
      • Smali Code Patching Guide
    • Intent Redirection Vulnerability
    • Janus Vulnerability (CVE-2017-13156)
    • Task Hijacking
    • Hacking Labs
      • Injured Android
      • Hacking the VulnWebView Lab
      • Hacking InsecureBankv2 App
    • Frida Cheat Sheet
  • 📶Network-Sec
    • Networking Fundamentals
    • Open Ports Security Testing
    • Vulnerability Scanning
    • Client Side Attacks
    • Port Redirection and Tunneling
    • Password Attacks
    • Privilege Escalation [PrevEsc]
      • Linux Privilege Escalation
    • Buffer Overflow (BOF)
      • VulnServer
      • Sync Breez Enterprize
      • Crashed CTF
      • BOF for Linux
    • AV Evasion
    • Post Exploitation
      • File Transfer
      • Maintaining Access
      • Pivoting
      • Clean Up
    • Active Directory
      • Basic AD Pentesting
  • 💻Desktop AppSec
    • Thin Client vs. Thick Client
  • ☁️Cloud Sec
    • Salesforce Hacking
      • Basics
      • Salesforce SAAS Apps Hacking
    • Firebase
    • S3 Buckets Misconfigurations
  • 👨‍💻Programming
    • HTML
    • JavaScript (JS)
      • window.location object
    • Python
      • Python Tips
      • Set
        • SetMethods
    • JAVA
      • Java Essentials
      • Java Essentials Code Notes
      • Java OOP1
      • JAVA OOP Principles
        • Inheritance
        • Method Overriding
        • Abstract Class
        • Interface
        • polymorphism
        • Encapsulation
        • Composition
      • Java OOP Challenges
      • Exception Handling
    • Go
      • Go Syntax Tutorial in one file
      • Methods and Interfaces
      • Go Slices
      • Go Maps
      • Go Functions
      • Concurrency
      • Read Files
      • Write Files
      • Package
        • How to make personal Package
        • regexp Packages
        • Json
        • bufio
        • Time
      • Signals-Exit
      • Unit Testing
  • 🖥️Operating Systems
    • Linux
      • Linux Commands
      • Tools
      • Linux File System
      • Bash Scripting guide
      • tmux
      • Git
      • Install Go tools from private repositories using GitHub PAT
    • VPS
    • Burp Suite
  • ✍️Write-Ups
    • Hunting Methodology
    • API BAC leads to PII Data Disclosure
    • Misconfigured OATUH leads to Pre-Account Takeover
    • Automating Bug Bounty with GitHub Actions
    • From Recon to Reward: My Bug Bounty Methodology when Hunting on Public Bug Bounty Programs
    • Exploring Subdomains: From Enumeration to Takeover Victory
    • 0-Click Account Takeover via Insecure Password Reset Feature
    • How a Simple Click Can Lead to Account Takeover: An OAuth Insecure Implementation Vulnerability
    • The Power Of IDOR even if it is unpredictable IDs
    • Unlocking the Weak Spot: Exploiting Insecure Password Reset Tokens
    • AI Under Siege: Discovering and Exploiting Vulnerabilities
    • Inside the Classroom: How We Hacked Our Way Past Authorization on a Leading EdTech Platform
    • How We Secured Our Client’s Platform Against Interaction-Free Account Thefts
    • Unchecked Privileges: The Hidden Risk of Role Escalation in Collaborative Platforms
    • Decoding Server Behavior: The Key to Mass Account Takeover
    • Exploiting JSON-Based CSRF: The Hidden Threat in Profile Management
    • How We Turned a Medium XSS into a High Bounty by Bypassing HttpOnly Cookie
Powered by GitBook
On this page
  • What is GraphQL?
  • How do APIs work in general?
  • How does GraphQL differ from REST APIs?
  • What Problems Does GraphQL Solve?
  • What are some security advantages and risks of GraphQL?

Was this helpful?

Edit on GitHub
  1. API-Sec
  2. GraphQL API Security Testing

The Basics

What is GraphQL?

GraphQL is an open-source query and manipulation language for APIs that allows clients to request specific data from a server without receiving unnecessary information. This differs from REST APIs, which return fixed data structures requiring clients to filter out unwanted data.


How do APIs work in general?

APIs facilitate communication between applications by enabling requests and responses based on defined rules.

  • Example: A browser (like Chrome) communicates with a server through an API to read or alter data.

  • Note: API clients aren’t limited to browsers; machines or other servers can also act as clients.


How does GraphQL differ from REST APIs?

  1. Data Fetching:

    • GraphQL allows clients to define exactly what data they need, reducing over-fetching and under-fetching.

    • REST APIs provide fixed responses, often requiring additional requests for more data or filtering unnecessary data.

  2. Endpoints:

    • GraphQL uses a single endpoint (e.g., /graphql) for all requests.

    • REST APIs expose multiple endpoints, each representing a resource (e.g., /users, /history).

  3. HTTP Methods:

    • GraphQL primarily uses the POST method for all operations, though it can also support GET.

    • REST APIs use specific methods (GET, POST, PUT, DELETE) to define operations.

  4. Error Handling:

    • REST APIs rely on HTTP status codes (e.g., 404 Not Found, 401 Unauthorized) to indicate errors.

    • GraphQL typically returns 200 OK for responses, even for errors, which are detailed in the response body under an errors field:

      {
         "errors": [
           {
             "message": "Cannot query field 'usernam'. Did you mean 'username'?"
           }
         ]
      }

What Problems Does GraphQL Solve?

  1. Efficiency in Data Fetching: Clients can retrieve the exact data they need in a single query, improving performance by:

    • Avoiding over-fetching (getting unnecessary data).

    • Avoiding under-fetching (needing multiple requests for complete data).

  2. Schema Federation and Stitching:

    • Schema Stitching: Combines multiple GraphQL schemas into one, enabling a unified API gateway.

    • Schema Federation: Automates stitching by letting the gateway find and consolidate schemas dynamically. These features simplify integration for clients but increase complexity, potentially introducing security risks.


What are some security advantages and risks of GraphQL?

Advantages:

  • By returning only the requested data, GraphQL reduces the risk of exposing sensitive information like PII (personally identifiable information).

Risks:

  • Complexity: Features like schema federation can lead to security vulnerabilities.

  • GET Method Usage: GraphQL queries over GET can introduce vulnerabilities, such as Cross-Site Request Forgery (CSRF).

  • Single Endpoint: A consistent endpoint (e.g., /graphql) may expose sensitive data if not secured properly.


PreviousGraphQL API Security TestingNextGraphQL Communication

Last updated 5 months ago

Was this helpful?

✉️